Silica minerals

- Quartz (alpha <573°C <beta <870). Change is total but the shape of the beta form is preserved in lavas
- Cristobalite & Tridymite are high temp forms but most common as devitrification products of obsidian (e.g. spherulites)
- Coesite, the high pressure form, occurs in impact-site rocks
- Opal is a cryptocrystalline form of cristobalite with sub-microscopic water-filled pores that make up 5-10%
Carbonates

- Calcite CaCO_3 Limestone and carbonatites
- Aragonite CaCO_3 (orthorhombic) High P, low T mm
- Dolomite $\text{CaCO}_3 \cdot \text{MgCO}_3$ Limestone
- Ankerite $\text{CaCO}_3 \cdot (\text{Fe,Mg})\text{CO}_3$ Ore deposits in limestone
- Siderite FeCO_3 Rare sedimentary rocks

Calcite cement in sandstone
Ultra thin-polished section of calcite showing twinning
Garnet $X_3Y_2Si_3O_{12}$

- Ca_3Al_3 grossular calc-silicate metamorphic rocks
- Fe_3Al_3 almandine meta-mudstones, med-high grade
- Mn_3Al_3 spessartine meta-mudstones, low grade
- Ca_3Fe_3 andradite skarns
- Mg_3Al_3 pyrope meta-basalts especially high-P

- A few granites/rhyolites have almandine/spessartine garnet. Some mantle peridotites have pyrope-rich garnet

Garnet in S-type granite

Garnet with inclusions in gneiss
Apatite and zircon

- Apatite $\text{Ca}_5(\text{PO}_4)_3(\text{OH},\text{F},\text{Cl})$ Holds most of the P in rocks. Forms needles in many igneous rocks. Small triangular grains in metamorphic. Some shells and some marine pttes in sedimentary rocks

- Zircon ZrSiO_4 Holds most of the Zr in most rocks. Very stable so concentrates in sand. Very high melting point and many granites have “restitic” (unmelted) zircon that has retained an earlier U/Pb isotopic age. 420 Ma Lachlan Fold Belt Granites have zircons that can be as old as 3000Ma
Andalusite Sillimanite Kyanite

- In meta-shales (excess of Al over that needed to form feldspar. Muscovite + quartz --> andalusite + K-feldspar + water is one common reaction.
Cordierite/Staurolite

- Cordierite
 - $\text{Al}_2(\text{Mg,Fe})_2\text{Si}_5\text{AlO}_18$
 - Meta-shales at low pressure, replaced by almandine at high pressure. Looks a bit like feldspar. Cyclic twins, inclusions and pleochroic haloes
- Staurolite
 - $(\text{Fe,Mg})_2(\text{Al,Fe})_9\text{O}_6(\text{SiO}_4)(\text{OH})_2$
 - Likes Al, Fe$^{3+}$ and Zn
- Meta-shales

Cyclic twins and a myriad of inclusions in cordierite

Staurolite porphyroblast
Nepheline - Leucite

- Nepheline: NaAlSiO_4
- Leucite: KAISi_2O_6
- The feldspathoids are a silica-poor mineral group chemically related to the feldspars.
- Nepheline occurs in silica-deficient alkaline rocks (gabbros, syenites, basalts, trachytes, phonolites) and in igneous rocks that have reacted with limestone.
- Leucite occurs in K-rich, silica-poor basalts and ultra-mafic lavas. Unstable at moderate pressure & does not occur in plutonic rocks.
Tourmaline

- Tourmaline is an Al-rich ferromagnesian mineral that contains 10% boron. It occurs in S-type granites, pegmatites and indeed any rock with boron. Does not occur with hornblende.
- Because it is resistant to abrasion and chemical attack it occurs in many sandstones.
- Hexagonal with darkest colour with C-axis normal to polariser.
CHLORITE \((\text{Mg,Al,Fe})_{12}(\text{Si,Al})_{8}\text{O}_{20}(\text{OH})_{16}\)

- Layer silicate that occurs in many low-grade metamorphic rocks. Also occurs as a sub-solidus alteration minerals in igneous rocks (commonly replacing biotite)

- Chlorite and the clay mineral montmorillonite have very similar compositions and on burial the clay changes to chlorite
Titanite \(\text{CaTi(SiO}_4\text{)(O,OH,F)} \)

- Titanite (sphene) occurs in many I-type monzonites, granodiorites and granites that have magnetite as the Fe/Ti oxide (generally have pink K-feldspar)
- Also forms in metamorphic rocks (e.g. meta-basalts) but is not easy to identify when very fine grained

Epidote: \(\text{Ca}_2(\text{Al,Fe}^{3+})_3\text{Si}_3\text{O}_{12}(\text{OH}) \)

- If Fe-free it is clinozoisite, Never more than one of the three
- Atoms is Fe. Epidote is generally pale yellow in thin section
- High relief and bright interference colours. In meta-basalts
- At low and intermediate grade. In altered igneous rocks
- Plagioclase can have fine epidote in the Ca-rich core
- In skarns with hedenbergite
- Mn epidote called piedmontite is pleochroic (red-black-pink)