Archean Lithospheric mantle: its formation, composition and today's remnants

O'Reilly, S.Y.* & Griffin, W.L.
GEMOC, Earth and Planetary Sciences, Macquarie University, Sydney, Australia (* sue.o'reilly@mq.edu.au)

Archean subcontinental lithospheric mantle (SCLM) is distinctive in its highly depleted composition, commonly strong stratification, and the presence of rock types absent in younger SCLM. Was the Archean mantle formed in a different way in a distinctive tectonic regime? What is the composition of original Archean mantle and how much persists today?

The "typical" Archean mantle composition used in geochemical/geophysical modelling is depleted garnet lherzolite, derived mainly from peridotite xenoliths in kimberlites from the SW Kaapvaal Craton, and a few from Siberia. However, most such "typical" Archean xenoliths have experienced repeated metasomatism, leading to a progression from dunite/harzburgite through "depleted" lherzolite to "fertile" lherzolite, mirroring the secular evolution of the Archean mantle and how much persists today.

The processes that take place during the transport of melts through the convecting mantle are the least understood and, therefore, state-of-the art problems among a series of processes of formation and evolution of mantle magmas. It is widely accepted that, dunite channels might be pathways by which mantle melts easily pass through the overlying mantle (e.g. [1]). The role of shear strain during the formation of dunite bodies in ophiolites was considered in details by [2]. It was also shown that the stress field can control the melt migration paths marked by dunite bodies occurring oriented regularly relative to the hinge and axial plane of a harzburgite fold [3]. The localization of melt flow and formation of channels under mechanical instability during the formation of dunites is expected to lead to a stronger olivine crystallographic preferred orientation (CPO) in these rocks than in their surroundings. However, accepted models explain formation of dunitic lithology mostly in oceanic environment, but one would face several challenges trying to apply them to the subcontinental lithospheric mantle.

The Ronda massif (southern Spain) is the largest (ca. 300km²) of several orogenic peridotite massifs exposed in the Betic and Rif (northern Morocco) mountain belts in the westernmost part of the Alpine orogen that was tectonically emplaced during early Miocene times. One of the most remarkable features of the Ronda massif is the 'recrystallization front' that represents the transition from the spinel-tecctonite to the coarse granular peridotite domain corresponding to a narrow boundary of a partial melting domain caused by thinning and coeval asthenospheric upwelling formed at the expense of former subcontinental lithospheric mantle and associated with melting and kilometer-scale migration of melts by diffuse porous flow through the 'asthenospherized' domain [4, 5, 6]. In the vicinity of the recrystallization front, coarse granular peridotites pass into layered granular peridotites with a typical layered structure composed of plagioclase lherzolites, harzburgites and dunites.

The main scientific goals of this study are to test new mechanism(s) for the formation of dunites and dunite-harzburgite-lherzolite layered bodies in the subcontinental lithospheric mantle on the example of Ronda peridotite massif (Spain), and to introduce new processes that are expected to lead the evolution of the subcontinental lithospheric mantle in extensional settings.

Deformation and melt localization in the subcontinental mantle: a case study from the plagioclase tectonite zone of the Ronda peridotite massif (South Spain)

Hidas, K.1, Garrido, C.J.1, Booth-Rea, G.2, Gervilla, F.1, Bodinier, J.-L.3, Tommasi, A. & Marchesi, C.1
1Instituto Andaluz de Ciencias de la Tierra, CSIC-UGR, Granada, Spain (karoly.hidas@gmail.com)
2Dept. of Geodynamics, Universidad de Granada, Spain
3Geosciences Montpellier, CNRS-Université de Montpellier-2, Montpellier, France
