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The 800 m thick Brumunddal sandstone (Brumund­
dal Group) is a partly eolian, partly fluvial sandstone 
deposited in a fault-limited basin in the northern part 
of the Oslo Rift in Permian time. Deposition of the 
sandstone represents the youngest rift-related activ­
ity in the northern part of the Oslo Rift. Well rounded 
detrital zircons are common accessory mineral grains 
in the sandstone. U-Pb dating of detrital zircon from a 
sample of the Brumunddal sandstone by LAM-ICPMS 
gives a range of ages from (rare) late Archaean ages 
to Permian (283±4 Ma). The age and initial £Hf pattern 
of zircon in the sediment match the main rock form­
ing events in Fennoscandia from Archaean to Phan­
erozoic time. This kind of diverse provenance was 
most likely obtained by repeated recycling of previ­
ous clastic sediments of Fennoscandian origin, with 
sedimentary rocks of the Neoproterozoic Hedmark 
Basin as the direct precursor. Trace element distribu­
tion show a conspicuous absence of U- and Th en­
riched zircons which is typical for granitic proto­
source rocks. This is consistent with complex trans­
port and redeposition history of the detritus: High U­
Th, metamict zircons were selectively removed by 
abration during repeated transport-deposition­
erosion cycles. In addition to recycled material, Cale­
donian syn-orogenic intrusions and Permian interme­
diate to felsic plutonic rocks in the Oslo Rift itself 
were minor but still significant sources of detrital zir­
con. 


