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INTRODUCTION

In	 the	 last	10	 to	15	years	 there	has	been	a	major	
advance	 in	 igneous	petrology	because	we	have	been	
able	 to	determine	 the	duration	and	 rates	of	magmatic	
processes	 with	 an	 unprecedented	 level	 of	 precision,	
age	 range,	 and	 spatial	 resolution.	 In this presentationIn	 this	 presentation	
we briefly outline the approach and results of using the 
diffusion	equation	 to	 the	 rates	of	magmatic	processes	
of	volcanic	and	plutonic	rocks.	We	combine	these	with	
results	of	age	determinations	 from	 radioactive	 isotope	
clocks	 mainly	 obtained	 from	 crystals.	 The	 intention	
is	 to	 establish	 if	 there	 is	 a	 contrast	 between	 the	 time	
information	using	different	approaches,	and	if	magmatic	
processes	at	volcanic	and	plutonic	systems	operate	at	
the	same	rates	or	not.	

THE DIFFUSION EQUATION TO RETRIEVE TIME 
SCALES OF IGNEOUS PROCESSES

One	of	 the	main	differences	between	volcanic	and	
plutonics	 rocks	 is	 their	 temperature-time	 path	 since	
begining of crystallization till solidification. This is very 
important	 to	 take	 into	 account	 when	 modeling	 the	
zoning	patterns	of	crystals	or	when	obatining	ages	from		
plutons.	The	two	cases	a	treated	below.	

The isothermal case: volcanic rocks 

In	 volcanic	 rocks	 the	 cooling	 rate	 from	 magmatic	
to	 room	 temperature	 is	 very	 fast,	 and	 one	 can	 safely	
assume	a	single	temperature	in	the	model.	Although	it	
is	 rather	 common	 that	 mineral	 zoning	 patterns	 record	
multiple thermal pulses (e.g., singer et al., 1995), if they 
vary	 within	 an	 intermediate	 value	 without	 a	 trend,	 the	
time	retrieved	from	this	intermediate	temperature	is	the	
same	as	that	from	a	model	with	thermal	oscillations	(e.g.	
Lasaga, 1998). For an isothermal case we can use a 

second	Fick’s	law	(1	dimension,	D	independent	of	C	or	
x):	
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where c = concentration, d = diffusion coefficient, x = 
distance, and t = time.	We	can	use	constant	initial	and	
boundary	conditions,	although	variations	at	the	boundary	
with	 time	were	 reported	 in	 volcanic	 rocks	 (e.g.,	Costa	
and chakraborty, 2004).

A cooling history: the case of plutonic rocks 

If	the	plutonic	rocks	have	experienced	a	prolonged	
thermal	history	we	need	to	consider	that	D	is	dependent	
on	T.	Since	T	varies	with	t,	we	have	a	dependence	of	D	on	
t. e.g., d(t) = do exp [e/rT(t)], with do = pre-exponential 
factor, e= activation energy, r= gas constant. It is 
common	that	the	composition	at	the	boundary	changes	
with	T	and	t,	and	we	need	to	also	introduce	this	in	the	
model (e.g., Lasaga, 1998). 

Closure temperatures and profiles: where radioactive 
isotopes meet diffusion

A	more	interesting	case	is	the	relation	between	the	
times	obtained	from	radiogenic	isotope	clocks	and	those	
from	diffusion.	These	are	clearly	related	with	the	notion	
of closure temperature, which quantifies the extent that 
a	radioactive	system	has	been	closed	to	exchange	(via	
diffusion)	 with	 the	 environment.	The	 initial	 formulation	
by dodson (1973) has been improved recently by more 
general	models	(Ganguly	and	Tirone,	2001)	but	still	using	
a	 single	 cooling	 rate.	Alternatively	 we	 can	 calculate	 a	
closure temperature profile using a variable cooling rate 
with a modified diffusion equation of the form:
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where the subscript da = daughter isotope, lambda = 
decay constant, No = number of radioactive parents at 
t = 0. 

TIME SCALES OF IGNEOUS PROCESSES 

The volcanic perspective

The	diffusion	equation	has	been	mostly	applied	 to	
open	system	processes.	For	example,	magma	mixing	in	
the	reservoir	may	occur	in	days	to	several	decades	prior	
to	 eruption	 (see	 Fig.1	 and	 references	 therein),	 similar	
to	 the	 times	 obtained	 for	 magmatic	 assimilation	 (1	 to	
200	years).	The	remobilization	of	completely	or	partially	
crystallized	 rocks	 to	yield	silicic	eruptions	can	happen	
in	10	to	5000	years.	The	time	information	about	magma	
differentiation	 is	 limited,	and	has	been	modelled	 to	be	
much	longer	than	previous	processes,	ca.	100	ky	for	a	
large	silicic	magma.

The	 process	 durations	 of	 a	 decade	 to	 a	 few	 ky	
are	 shorter	 than	 those	 obtained	 from	 in	 situ	 dating	 of	
accessory	minerals.	For	example,	 the	residence	times	
and perhaps differentiation of many large volume (> 50 
to	5000	km3) silicic magmas varies between 10 to 400 
ky	(Fig.	1).	Thus it appears that for differentiation timesThus	it	appears	that	for	differentiation	times	
both	approaches	give	coherent	results.	The	discrepancy	
in	the	short	time	range	might	have	several	sources	and	
interpretations.	The	phenocrysts	used	in	dating	could	be	
recycled	from	older	parts	of	the	system.	In	this	context	
it	 is	worth	noting	that	the	whole	rock	decreases	in	Ra/
Th	with	increasing	SiO2	(or	Th	ppm)	give	time	scales	of	
differentiation	of	few	ky	which	is	in	good	agreement	with	
estimates	 from	thermal	models	 for	cooling	of	magmas	
in the mid crust (e.g. george et al., 2004). These are 
maxima	especially	if	assimilation	processes	are	involved	
and	 if	 two	 end-member	 mixing	 occurs,	 differentiation	
could	be	effectively	instantaneous.	Older	U-Th	mineral	
ages (which often conflict with the presence of ra 
disequilibria) probably reflect cumulate recycling (e.g.probably reflect cumulate recycling (e.g. 
Turner	et	al.	2003).

The plutonic perspective

Most	determinations	of	time	scales	from	plutons	are	
not	 approached	 within	 the	 same	 framework	 as	 those	
of	 volcanic	 rocks.	They	 typically	 involve	 the	growth	or	
cooling	histories	of	large	complexes	rather	than	a	single	
and	small	pluton	of	comparable	size	to	the	1-100	km3	of	
most	eruptions.	Despite	the	abundant	evidence	for	major	

and	trace	element	zoning	patterns	in		‘plutonic’	crystals,	
only	a	few	applications	have	been	done	of	the	diffusion	
equation	 without	 involving	 radioactive	 dating	 (Fig.	 1).	
The	 available	 data	 for	 melt	 migration	 and	 reaction	 in	
cumulates	or	the	times	for	assimilation	vary	between	a	
few	decades	to	a	few	ky,	although	the	entire	magmatic	
history	recorded	in	garnets	can	be	as	long	as	10	My.	

Far more data has been obtained using u-Pb, k-
Ar	 and	 Rb-Sr	 systems	 and	 various	 minerals.	 Plutonic	
complexes	of	5-1000	*	102	km3	require	magmatism	than	
spans	 between	 0.3	 and	 50	 My	 and	 leads	 to	 average	
magma	emplacement	rates	of	0.01	to	0.001	km3/y	(Fig.	
1).	In	general,	smaller	bodies	have	shorter	emplacement	
times	but	comparable	emplacement	rates.	Cooling	rate	
estimates	derived	from	the	ages	of	minerals	with	different	
closure	 temperatures	 lead	 to	 maximum	 values	 on	 the	
order	 of	 2*10-3	 to	 1*10-5	 oC/y,	 the	 faster	 cooling	 rates	
corresponding	 to	 smaller	 bodies.	 The	 time	 constrains	
above	on	the	order	of	several	My	are	 longer	 than	any	
yet	 reported	 but	 should	 be	 taken	 only	 as	 maximum.	
Moreover	 they	 also	 include	 all	 magmatic	 processes	
involved,	 from	 fractional	 crystallization	 to	 mixing,	 and	
assimilation.

CONCLUSIONS

The	 information	 presented	 above	 leads	 to	 the	
following	 observations	 regarding	 the	 approaches	 to	
obtain	time	scales	and	the	rates	at	volcanic	and	plutonic	
systems:

(1)	Time	scales	recorded	from	diffusion	studies	tend	
to	be	shorter	than	those	recorded	using	radioactive	dating	
of	crystals.	This	includes	volcanic	and	plutonic	systems.	
This	can	be	in	some	cases	due	to	the	presence	of	old	
xenocrysts; it may also reflect that the diffusion times are 
only	recording	the	duration	of	one	event	which	is	part	of	
a	 much	 more	 prolonged	 magmatic	 evolution	 involving	
multiple	histories	(e.g.,	many	intrusive	episodes).	

(2)	 It	 is	 apparent	 from	 Figure	 1	 that	 more	
determinations	of	 the	duration	of	processes	 in	plutons	
using	diffusion	methods	are	desirable.	The	span	of	time	
scales	 from	volcanic	 rocks	overlaps	with	 their	plutonic	
counterparts	 in	 the	 range	 of	 decades	 to	 thousand	 of	
years.	 However,	 volcanic	 rocks	 record	 times	 as	 short	
as	a	few	weeks	and	plutonic	may	extend	to	My.	These	
longer times for the formation of a pluton may reflect the 
integrated	 effect	 of	 multiple	 processes	 as	 determined	
from	single	volcanic	(small)	eruptions.

(3)	 There	 might	 be	 a	 difference	 in	 time	 scales	
depending	on	the	size	of	the	system	or	on	the	chemistry	
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which	seems	to	be	independent	whether	it	is	a	plutonic	or	
volcanic system. Large systems seem to take longer to 
develop	as	could	be	expected	if	magma	generation	rates	
are	 the	same	as	 for	small	systems.	This	 is	suggested	
by	the	more	similar	residence	and	emplacement	times	
of	 large	 eruptions	 and	 plutons.	 The	 different	 physics	
of silicic and mafic magmas (e.g., viscosities and 
associated	diffusion,	nucleation	and	growth	rates)	might	
also	 lead	to	differences	 in	 time	scales,	something	that	
needs	to	be	tested	with	more	data.	
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