An electron microprobe, LAM ICP-MS and single-crystal X-ray study of the effects of pressure, H₂O concentration and fO₂ on experimentally produced basaltic amphiboles J. Adam¹, R. Oberti², F. Camara² and T.H. Green³ ¹408 Princes Highway, Blakehurst, N.S.W., 2221, Australia (john adam@bigpond.com) ²CNR-Istituto di Geoscienze e Georisorse, unità di Pavia, via Ferrata 1, I-27100, Italy ³Department of Earth and Planetary Sciences, Macquarie University, N.S.W., 2109, Australia Amphiboles were crystallized in sub-liquidus experiments at 0.5-2.0 GPa and 1000-1050 °C from hydrous nepheline basanite and olivine basalt starting compositions. Both amphiboles and coexisting melts were analysed for major, minor and trace elements by a combination of electron microprobe and LAM ICP-MS. Individual amphiboles were also characterized by single-crystal X-ray structure refinement, which allowed estimates of dehydrogenation. amphiboles display compositional variation that can be interpreted both as: (1) a crystal-chemical response to increasing pressure; and (2) a response to changes in the activity of H_2O and fO_2 . As pressure increases Al^{IV} at the T1 site is replaced by Si, and enters the M2 site as Al^{VI} . This results in a decrease in the c and b cell edges. However, the overall decrease in cell volumes is small because a sinß either decreases only slightly or actually increases with increasing pressure. This is due to increased ^B(Fe, Mg) contents, and facilitates the entry of K at the A site and of Cl at O3 (K_Ds for both increase with pressure). The degree of dehydrogenation at O3 correlates inversely with the concentration in coexisting Dehydrogenation is locally balanced either by M1Ti (because O²⁻ is often < 2 Ti, Ti often distributes over the M1 and M2 sites) and by M1Ti + M1,3Fe³⁺ (at high fO_2 conditions). D^{amph/melt} values for Ti, Zr, Hf, Nb and Ta also correlate positively with O²⁻ suggesting that dehydrogenation favours the incorporation of high-charged cations at the M1 site ($^{M1}R^{4+} + 2^{O3}O^{2-}$ \leftrightarrow M¹R²⁺ + 2 O³OH⁻). However, D_{HFSE} also correlate positively with Aliv consistent with the incorporation of HFSE in both M1 and M2 sites. D_{REE} correlate positively with Aliv and negatively with Alvi. Increased fO_2 results in increased Fe⁺³, Al^{iv} and D_{REE}, but does not produce a noticeable increase in O² or in D_{HFSE} .